Visual Compression: Understanding How It Works
Scott Bondurant Chandler

Abstract
From web graphics to instructional media, compression plays a significant role in the visuals we use. By addressing
current compression techniques, the benefits and the costs of algorithms is evaluated. Terms such as temporal compression,
spatial compression, run-length, LZW, microblock, DCT and delta frames are defined.

Overview

In a digital world, bandwidth (the data pipe for digital
data) is at a premium. We have all experienced the
immense delays in loading a slow web page. With
innovations like high-definition television on the horizon,
making the most of limited spectrum is increasingly
important.

There are three common types of compression:
reductionist, spatial and temporal. Additionally, these
strategies may be lossless or lossy. With lossless
compression the uncompressed image is a perfect digital
match for the original; in lossy compression greater
compression is possible because acceptable quality loss
occurs.

Reductionist Compression

The most obvious form of compression occurs when
data is simply thrown away. The simplification of the
signal to be compressed is certainly the easiest kind of
compression.

Working At Multimedia Quality

Consider the difference between print quality and
screen quality. Most professional scans are created at 300
pixels per inch (ppi) when adjusted for the print size.
Multimedia and web designers work at a far lower
resolution of 72 ppi. Throwing away these extra pixels

result in a screen quality file that takes up only 5.76% of
its original size (compression of 17.36:1).

Reducing The Size And Frame Rate Of Digital Video

When digitizing video for use on CD-ROMs, a similar
trick is used. High quality video intended for CD-ROM
is roughly a third the horizontal size and half the vertical
size of broadcast television. This cuts the data rate by
about 83%. For web video, it is common to cut the
physical size even more dramatically. While this might
seem dramatic, consumer VHS video cassette records less
horizontal resolution (Taylor, 2000).

CD-ROM based video uses only 15 frames per second
instead of the 30 found in NTSC broadcast video. This
results in halving the bandwidth before other types of
compressions are used.

Reducing The Color Signal Of Television

Even analog broadcast television is reduced in analog
form. Because of the way that the human perceptual
system works, luminance (tone) is more important than
chrominance (color). Computers tend to store values using
the RGB color model. The amount of red, green and blue
is stored on an additive scale in which 0 is no light of a
certain color and 255 is solid color. When all three values
are present in equal amounts, the viewer perceives gray.
When no light is present, black is seen; and when solid

Figure 1
An Example Of Temporal Compression
(video clip used with permission of Carrie Steffey, 2000)




red, green and blue light are present, white is visible. In
this color model, all three primary colors of light are
equally represented. Color television uses a different
system known as YUV or more accurately YC,C,. The
Y value represents luminosity, perhaps more easily
thought of as grayscale. When black and white television
was standard, only the Y signal was broadcast. Color
television extended the standard to include color,
represented in YC,C, by the C and C, components. C,
represents the differences between Y and the blue color
component while C_ represents the difference between
between Y and red color component. The obvious
question is “where is the difference between luminance
and green?” The answer to this question is revealed in
the formula for luminosity: Y = 0.59G + 0.30R + 0.11B
(Fibush, 1999). Note that luminance is based much more
heavily on green than on red or blue; as such, the Y value
is used as an indication of green. Further, the frequency
bandwidth allocated for television weights the luminance
(Y) equal to the sum of the chrominance signals (U+V).
Converted into a digital equivalent, luminance has 8 bits
of data while chrominance have 4 bits each. This system
of weighting luminance greater than chrominance, results
in a savings of 33.3% over the RGB systems used in most
computers. Interestingly, modern compression schemes
for digital video have begun to adapt to giving tone more
bandwidth and resolution than color.

Blur Video

When capturing digital video, it is common to have
sampling errors. These visual problems can complicate
the compression process. One common trick is to
eliminate these “stray pixels.” One technique is to shoot
video with a short depth of field. Throwing the
background out of focus not only directs the viewer’s
attention on the foreground but also makes the
background easier to compress. Good compression
software will either slightly blur an image before
compressing or actually hunt down stray pixels and
remove them. In effect, we’re reducing the complexity
of our footage before applying other forms of
compression.

Color Palettes

Another way to reduce bandwidth is to simplify the
colors palette. Tonally flat images compress better than
images that use a wide palette of colors. In fact, some
formats severely limit the number of colors available. Full
color images can use up to 16.7 million distinct colors.
Only a fraction of these colors may be used in a specific
image.

The Compuserve GIF format only supports 256 colors.
When images are converted to GIF87 or GIF89a, the
numbers of colors must be reduced to 256 colors or less.

There are several different techniques that can be used
to reduce the number of colors. One way is to convert to
a distributed palette of colors. In the middle 1980s Apple
developed a matrix of 256 colors developed to closely fit
any of the millions of available colors. To maintain cross-
platform compatibility, most web developers in the middle
1990s used a similar palette of 216 colors. These 216
index colors are often called the 6x6x6 clut (color look
up table). This three dimensional cube of color is
developed by permuting six distinct, distributed values
of the three additive colors. These values are 0, 51, 102,
153, 204, and 255. For example, Pantone 202’s closest
RGB value is 145, 44, 69. This means that the red
component is 145 out of 255, the green component is 44
out of 255 and the blue component is 69 out of 255.
Because this color is not within the 6x6x6 palette, the
color is scaled to the closest possible color 145, 44, 69.
The color is not an exact match but is certainly a maroon.
It is possible to develop a common palette of 256 color
for each image. For compatibility with older computers,
it is best to build a super palette. A super palette optimizes
all of the images in a given web site to the same 256
colors.

In many cases, graphics don’t need to use all 256 colors.
For instance, most type-only buttons on the web are really
one color graphics with a transparent background. These
files compress much more accurately and create smaller
files. In this case, the color reduction offers tremendous
storage savings.

If the colors within a web graphic can be named—a
smaller, better looking file will be created from reducing
the color palette than from using other compression
techniques. In general, each named color exists with an
anti-alias to a background color. This soft edge actually
contains a series of separate colors which act as tints
against the background. Allow eight small steps of color
for each color you can name in a web graphic. By using
only 32 colors in a graphic, instead of the default 256,
you can dramatically improve the overall compression.

Reducing the number of colors in a specific graphic or
web site is a very tedious and time consuming process.
Most of the graphics on the web no longer use the GIF
file format with its color reduction techniques. GIF is
now used primarily for specialty graphics such as “spot
color” buttons, text buttons, images that must have
transparent backgrounds and because it offers animation.

Temporal Compression
Video can be thought of as a sequence of still images
presented at 29.97 frames per second. Many of these
individual frames share the identical image data.
Consider a perfume logo freezeframe at the end of an
advertisement on broadcast television. Even though no
movement can be seen, the same 349,920 pixels are being



sent 29.97 times per second. In effect, the same image is
being sent over and over. In the world of analog television,
spectrum is reserved and there is nothing to be gained by
not sending the same picture over and over. In other
formats, however, we could better utilize that bandwidth
for other network users, higher quality video or more
instructional content.

Figure 1 shows a concrete example of temporal
compression. The top row of the figure shows four sample
images taken from a “talking heads” lecture captured at
arate of five images per second. Because the digital video
camera is setting on a tripod, only the professor is moving.
The benefit of temporal compression is illustrated in the
bottom row of images. The white rectangle indicates that
the entire image of the professor and background is sent
once. However, the second image shows that only a small
percentage of the actual image changes in the first 0.20
seconds. Although the parts of the women in motion
continue to change with each successive frame, most of
the image need not be resent. In this example, temporal
compression reduces file size to less than 10% of the
original movie.

Frankly, there is no advantage to not temporally
compressing delivered content and significant reason to
compress. Image makers are encouraged to aggressively
use temporal compression.

Temporal Frame Types

Temporally compressed footage works by defining
several different types of frames. A combination of
temporal frame types allows the compression to occur.

The simplest type of frame is a reference frame, often
called a keyframe. Because keyframe has a completely
different meaning in animation than in digital video, this
article will use the more technical term “i” frame. These
“i” frames are used to define a specific moment in time.
The “i” frame acts as a starting point for other types of
frames. Reference frames tend to be large in terms of file
size because they attempt to capture the entire content in
one moment of time.

Following an “i” frame, there are usually a series of
delta frames also known as “p” frames. Delta frames look
at the change between the current frame and previous
frames. A “p” frame has a smaller footprint than the “i”
frame because it only specifies data that has changed in
the last fraction of a second.

Revisiting the example of the freezeframe above, the
delta frame would only need to contain the code to retain
the previous screen. This code generally takes 8 bytes of
data while resending the complete image would require
1,049,760 bytes per frame.

“P” frames are dependent on the frames before them
in time. Consider a digital movie that contains only one
“1” frame and then 216,000 “p” frames. Because each

[T 1)

p” frame is based on the one before it, it wouldn’t be
feasible to rewind the media only a few seconds during
the credits: backing up one frame would require the
decompression engine to go all the way back to the
beginning of the footage (the most recent “i”” frame) and
work forward until the desired frame. In fact, some early
temporal compression schemes had this flaw because they
used very few “i” frames. If the user is able to move
backwards or rapidly forward through the content, “i”
frames should occur often. If the user will only watch the
media forward at actual speed, multiple “i” frames may
not be needed.

In reality, there are other reasons why “i” frames are
needed. Many compression algorithms are hungry for
reference frames. Cinepak, for instance, decays in quality
if an “i” frame isn’t encountered every second or so.
MPEG-2, the standard for mini-dish satellite and DVD-
Video, tends to have an “i” frame about every 10 frames.
Other animation routines use fewer keyframes, the
animation CODEC at maximum quality needs only one
reference frame if the user can’t scrub through the media.
Sorenson is an especially flexible CODEC: Sorenson uses
a high number of keyframes for live video, about one
reference frame for every five delta frames; but also does
well with very few frames for static instructional graphics.
With hundreds of delta frames for each reference frames,
Sorenson will simply improve the quality of a small piece
of the total graphic with each delta frame.

Another unique type of temporal frame is the
bidirectional interpolated frame, known as a “b” frame.

33

The “b” frame gets information from the “i” frame before
it in time and the “i” frame after it in time. While this
may at first seem complex, it isn’t. Some transitions
between motion footage involve wipes from one clip of
footage to another. While these transitions are difficult to
compress using conventional techniques, the “b” frames
can simply specify which image to reference for each
pixel at each stage of the transition (Lee, 2000).

There are other types of temporal frames. Almost all
motion CODECs use “i” frames and some
implementation of “p” frames. “B” frames and other types
of temporal frames are more rare.

Video that doesn’t use temporal compression can be
thought of as containing only “i” frames. For example,
Motion JPEG and DV (digital video CODEC) do not use

7330}

temporal compression. Performing a cut at an “i” frame
is very easy while cutting at a “p” frame requires that
section of footage to be recompressed. In effect, the cut
point must be converted to a reference frame and the delta
frames following the cut point must be recompressed to
be based off of the new reference frame. However, both
of these compression systems are used only where there
is adequate bandwidth to not need temporal compression.

In general, temporal compression is a delivery format.



While footage is being created, edited and composited
temporal compression is not used. Temporal compression
is performed as a last step before content is mastered.
Temporal compression can dramatically reduce file size
or more appropriately use limited bandwidth. When
temporal compression is done correctly, image quality is
not harmed even though compression can be significant.

Spatial Compression
Spatial Compression Types

Spatial compression reorganizes data to take up less
space and therefore make it easier to send. Spatial
compression occurs in two different forms lossless or
lossy. Different uses dictate the use of different
compression schemes.

Lossless compression looks for patterns in each image
that can be repeated exactly or conveyed as instructions
rather than images. Despite being reorganized, an image
that has been compressed with lossless compression will
match the original image exactly. The “animation”
compression scheme often used for the development of
special effects is an example of lossless spatial
compression.

Lossy data compression works in a different way.
Because lossy compression doesn’t attempt to recreate
the image exactly, it can create much smaller files. It
would be unfair to suggest that lossy compression is
always unattractive. Lossy data compression can be of
exceptionally high quality.

Run Length Compression (RLE)

Run length is a lossless compression routine which can
compress simple files with dramatic results. Run length
checks to see if a single color is contiguously repeated
multiple times on the same line. For instance, Adobe
Photoshop native files use RLE compression.

Icons are small raster images used to represent
programs, data files and other structures. Historically,
most icons are 32 pixel wide by 32 pixel tall and use a
limited color palette. The smiley icon shown in Figure 2
is comprised of only black, white and yellow. The normal,
uncompressed way to represent this icon would be to
simply indicate the color of each of the 1,024 pixels in
order. Figure 3 shows a simple representation of this
technique using the letters K, W and Y to indicate black,
white and yellow, respectively (K for blacK because B is
commonly used for Blue). As with many stylized
illustrations, there is a high degree of redundancy in the
image. A simple form of run length is shown. Each letter
has been preceded by the number of times it appear
consecutively in each row (Figure 4). Because the icons
dimensions are known and spaces need not be stored, the
characters can be written as a single continuous stream
(Figure 5). The run length compressed version of the

Figure 2
Smiley Icon, 32 pixels x 32 pixels, 256 colors

Figure 3
Smiley Icon, Top Half, Uncompressed As Color Initials
w=white, k=black, Y=yellow

Line 01 WWWWWWKKKKKWNWRNWRNWNWNWNWNWRWNWWW
Line 02 WWWKKKKKKKKKKWNWNWNWNWNWNWRWNWNW
Line 03 WWKKKKYYYYKKKKWWWNWWWWWNWWNWWNWKW
Line 04 WKKKYYYYYYYYKKKWNWWWWNWNWWWWWWKKK
Line 05 KKKYYYYYYYYYYKKKKWNWNWNWNWKKKKWW
Line 06 KKYYYYYYYYYYYYYKKKWWWWWKKKKKKKWW
Line 07 KKYYYYYYYYYYYYYYKKKKKKKKKKKYKKWW
Line 08 KKYYYYYYYYYYYYYYYYKKKKKKYYYYKKWW
Line 10 KKYYYYYYYYYYYYYYYYYYYYYYYYYYKKWW
Line 11 KKYYYKKKKKKKKKKKKKKKKKKKKKYYKKWW
Line 12 KKYYKKKKKKKKKKKKKKKKKKKKKKYYKKWW
Line 13 KKKYYKKKKKKKKKKKKKKKKKKKKKYYKKWW
Line 14 WKKYYYKKKKKKKKYYYKKKKKKKKYYKKWWW
Line 15 WKKKYYYKKKKKKYYYYYKKKKKKYYKKWWWW
Line 16 WWKKYYYYKKKKYYYYYYYKKKKYYKKKWWWW

Figure 4
Smiley Icon, Top Half, Finding Repeating Color Pixels

Line 01 6W ©5K 21W

Line 02 3W 10K 19W

Line 03 2W 4K 4Y 4K 18W

Line 04 1W 3K 8Y 3K 14W 3K

Line 05 3K 10Y 4K O9W 4K 2W

Line 06 2K 13Y 3K 5W 7K 2W

Line 07 2K 14Y 11K 1Y 2K 2W

Line 08 2K 16Y 6K 4Y 2K 2W

Line 10 2K 26Y 2K 2W

Line 11 2K 3Y 21K 2Y 2K 2W

Line 12 2K 2Y 22K 2Y 2K 2W

Line 13 3K 2Y 21K 2Y 2K 2W

Line 14 1W 2K 3Y 8K 3Y 8K 2Y 2K 3W
Line 15 1W 3K 3Y 6K 5Y 6K 2Y 2K 4W
Line 16 2W 2K 4Y 4K 7Y 4K 2Y 3K 4W

Figure 5
Smiley Icon, Stream Of Run Length Compressed Color Initials

6W5K21W3W10K19W2W4K4Y4K18WIW3K8Y3K14W3K3K10
Y4KOW4K2W2K13Y3K5W7K2W2K14Y11K1Y2K2W2K16Y6K4
Y2K2W2K26Y2K2W2K3Y21K2Y2K2W2K2Y22K2Y2K2W3K2
Y21K2Y2K2W1W2K3Y8K3Y8K2Y2K3W1IW3K3Y6K5Y6K2Y2K
4W2W2K4Y4K7Y4K2Y3K4W

entire icon is only 401 characters instead of 1,024.
Some images have very few or no adjacent matching

pixels. This particular form of run length would actually

increase the file size by putting the value “1” in front of



each color. For this reason, most run length compression
schemes only specify the number of pixels that repeat
when three or more identical pixels appear in a row.
Run length is commonly used because it is an extremely
fast and easy way to compress and to decompress. As
with most types of compression, the larger the size of
image, the more dramatic the expected compression ratio.

Lossless Pattern Matching

Almost all data contain patterns. Some of these patterns
are relatively simple and others are more subtle. In fact,
many of the general purpose compression schemes began
by attempting to compress type. Consider this document
for a moment. Which words or phrases are most common?
The word “compression” obviously appears many times.
The word “the” is not only common but usually appears
with a space on either side.

A simple form of compression might use an character
like the tilde (“~”) to replace the name of a company or
organization. If you could replace every occurrence of
“International Visual Literacy Association” with a single
character like “>” 41:1 compression has been obtained
for that phrase.

As the files is compressed, a hash table is built. The
table has a list of all the abbreviations used in the file.
Although the file is smaller during storage and
transmission, the file can be precisely reconstructed with
minimal effort. By building a separate hash table for each
file, the unique patterns and word choices of each file
can be exploited.

The most widely used pattern matching routines are
Huffmann, Lempel-Ziv and LZW. These routines
carefully build a encoding and decoding table but happen
relatively quickly by modern standards. Huffmann builds
a decoding table that is sent before the data component
while Lempel-Ziv and the optimized LZW (Lempel, Ziv
and Welch) build the table as the data is encoded. While
building the table “on the fly” slightly degrades the
effectiveness of compression, the one-pass technique
results in a faster compression and decompression (Welch,
1984).

The most common “word” length is 12 bits. (Welch,
1984) Although this could make individual letters longer
than the ASCII standard of 8 bits per character, the
character set is extended to 4,096 entries. As such, many
more words and patterns will be compressed than with
an 8 bit word length. In general the gains in compression
more than offset the length added to a single character.

The LZW routine is used for compressing GIF files
and in most implementations of TIFE. Although better
pattern matching techniques exist, the mathematical
simplicity and relatively fast nature of LZW make it the
compression method of choice for simple applications.

Figure 6
Examples of microblocks from JPEG, DCT hash table

Modern Lossy Compression

Discrete cosine transformation (DCT) became the best
phenomenon in compression. Known best as the
compression system behind JPEG images (Joint
Photographer’s Expert Group), DCT offers a wide range
of highly lossy to almost-lostless compression. DCT also
builds a table of the most common data patterns. However,
an exact fit isn’t needed. Under JFIF (JPEG File Image
Format), the most common variant of JPEG, each small
two dimensional section of the image is compared to the
entries in the quantization tables. In most cases a “best
fit” is determined by means of an absolute accuracy.
Figure 6 shows 25 sample microblocks from a heavily
compressed image. Each of these blocks is an 8x8 grid
shown at high magnification.

JFIF offers the user 100 different quality levels. The
quality level is used to determine the desired compression
ratio. Given the approximate compression level, a certain
number of small, two dimensional patterns are isolated
from the image. The algorithm then compares each small
sample in the image file to the available patterns in the
compression table. Although the patterns may not be
exact, a suitable replacement block is usually found.

Because JPEG has such a wide range of compression
ratios and qualities, it is useful to test the amount of actual
tonal shift in the different compression amounts. For this
example, three different quality JPEGs were created using
the Photoshop JFIF format from a scanned 8x10 inch tonal
image. The files was saved at maximum, medium and
very low qualities. Using the lossless TIFF as a reference,
differing levels of compression can be seen (see Figure
7) although the halftone process used in printing hides
much of the quality loss. Perhaps most remarkable is the
relatively high quality seen at medium levels of
compression. Although this image is quite visually
complex, a version acceptable for use on the web is
available at 3.48:1 compression. This offers a net result
equal to 2.30 bits per pixel instead of the 8.00 bits per



Figure 7
Photograph Compressed At Four Qualities

LZW TIFF maximum medium low
lossless JPEG JPEG JPEG
438 k 333k 116 k 48 k

Figure 8
Pixel Change During Compression, Bottom Of Same Image

Percent of pixels which change during compression
0% 28% 92% 96%

0% <1% 11% 25%
Maximum tone change

pixel for an uncompressed image.

If we use the same data files to continue analyzing
tonality, we can see an even more remarkable trend. One
indicator of image quality is the “fit” of each pixel in
each microblock. By analyzing the tonal shift in
aggregated pixels we can determine how much the image
has changed. As you might expect, a large percentage of
the pixels do change as image compression ratio increases.
This is perhaps best illustrated in figure 8 where nonwhite
pixels indicate any change. However, the amount of that
change is minimal at modest levels of compression. In
the high-quality JFIF, the median pixel did not change
value at all. Even in the medium quality JFIF, the median
pixel changed only 1.5% Although the majority of the
image is changing when losslessly compressed, the tonal

shift is often very subtle. Only when image quality is low
did we see large changes in tone. As mentioned previously
the halftone process used for commercial printing can
reduced visible change even further. Most professional
printing, however, correctly uses only modest image
compression.

When compression quality is low, it is possible to see
the flaws or artifacts in a image compressed with DCT.
When artifacting becomes extreme, it is possible to see
numerous distracting artifacts known as a carnival.
Carnivals are often observed around the edges or anti-
aliased type and in areas of high contrast.

Non-linear Video And Spatial Compression

Almost all of the expensive, proprietary nonlinear
editing systems use spatial compression. In fact, the DV
format is compressed 5:1, while DVD-video is
compressed approximately 14:1. Some high end edit
systems allow users to choose their compression ratios
from as low as 2:1 to as high as 120:1, depending on their
situational needs to balance hard drive space and playback
bandwidth with image quality considerations.

Future Compression

Over the last ten years, two new types of compression
have become the focus of intense study. Although
generally grouped together, Fractal compression and
Wavelet technology take different approaches.

Fractal compression technology is contextually based.
Like JPEG, segments of the image are sampled and used
to define data which can be reconstituted into a lossy
approximation (Fisher, 1995). The key to the fractal
approach is that these reference blocks can be modified if
needed. While JPEGs blocks are used exactly as they
appear in the original imge, the fractal blocks can be
manipulated in four distinct ways. Each original matrix
block may be used again as a scale, stretch (non-
proportional scale), skew and rotate (Fisher, 1995). Simply
put, a gentle curve definition may be used repeatedly at
different sizes. Although exceedingly processor intense,
fractals can become more accurate the longer they are
processed. Because of the iterative nature of fractal
compression and a need for incredibly long processing
times using existing technology, the true value of fractals
has yet to be realized. With advances in technology, fractal
compression may become common. For the immediate
future, however, there seems to be no visible advantage
to fractal compression technology.

Wavelet compression technology also uses an iterative
approach but using fundamental shapes that are not
contextually defined. Instead, a prefined series of waves
are used to approximate part of the image. A series of
these waves are then combined to create more complex
forms. By iterating on image data by combining large



numbers of increasing smaller waves, the image can be
compressed (Mallet & Falzon, 1999). Wavelet
mathematics is similar to fractal compressions in many
ways. In fact, one area of wavelet research covers
refineable functions which, like fractals, are “short linear
combinations of dilated and translated versions of
themselves” (Perrier & Wickerhauser, 1999, p. 78.).
The new JPEG2000 standard uses wavelet
compression. As of this writing, JPEG2000 is a specialty
technology available only as a commercial product.
However, many experts feel that the alpha transparency,
region of interest support and progressive encoding will
make JPEG2000 the de facto standard in the future.
Region of interest compression, allowing encoding at
different quality levels, is already common in video
applications while the variety of resolutions supported
by progressive encoding is popular in medical imaging.

Compression Ratios

Most forms of lossless compression achieve
compression near 2:1 for grayscale or color photography.
Some forms such as fax compression and orthochromatic
LZW achieve higher ratios up to 12:1. The lossy
algorithms routinely offer better than 2:1 compression
and are commonly used at up to 50:1 compression. As
processor speeds improve and embedded technology
become more common, more “effort” can be put into
compression and decompression technology.

Summary

All three varieties of compression offer unique
advantages and challenges. Clearly, no one type or
algorithm can meet all compression needs. By carefully
weighing the options, however, one can make valid and
reasonable compression choices that result in the best
possible image in a given context.

References
Fibush, David, K. (1997). A guide to television systems
and measurements. Tektronix: Beaverton, Oregon.

Fisher, Y. (1995), Mathematical Background. In
Fractal Image Compression: Theory and Applica-
tion. Ed. Yuval Fisher. Springer-Verlag. New York.

Lee, W., (2000), MPEG compression algorithm,
Online: http://icsl.ee.washington.edu/~woobin/
papers/General/node2.html, April 27, 2000.

Mallet, Stéphane & Flazon, Frédéric (1999) Under-
standing Wavelet Image Coding. In Advances in
Wavelets, Ed. Ka-Sing Lau.Spring-Verlag.
Singapore.

Perrier, Valerie & Wicherhauser, Mladen Victor (1999)
Multiplication of Short Wavelet Series: Using
Connection Coefficients. In Advances in Wavelets,
Ed. Ka-Sing Lau.Spring-Verlag. Singapore.

Taylor, J., (2000), DVD-FAQ, Online: http://
www.dvddemystified.com/dvdfaq.html, April 27,
2000.

Welch T. A., (1984), IEEE Computer, A Technique for
High-Performance Data Compression. Volume 17,
Number 6, June 1984.



