
You must leave “use device fonts” unchecked
In this situation, you want to ensure that Flash embeds 
font data because the odds of client-side machines having 
your particular pixel-based font installed on their machine 
is slim. We usually try to avoid anti-aliasing at smaller sizes 
but if used correctly, the anti-alias Flash applies to the 
letterforms will be invisible.

You must pay careful attention to pixel alignment
In order to ensure that a pixel-based font does not anti-alias 
when rendered to a shockwave movie, you must use one 
of three alignment techniques. Flash must use fractional 
pixel coordinates in order to facilitate frame interpolation 
and automation. This allows for much smoother rendering 
of animations. But it also means that objects that are not 
animating can be placed on fractional pixel coordinates, 
causing thier edges to anti-alias when not necessary. This is 
especially problematic when setting type. To make matters 
worse, when symbol nesting occurs, these fractional 
coordinates can mathematically compound. By using one 

Using Pixel Fonts in Flash MX

As a flash designer or developer, you’re no doubt familiar with 
using embedded fonts with anti-alias rendering and device fonts 
with client-side non-anti-alias rendering. In addition to these 
two methods of dealing with type rendering, there is a third 
method that many professional designers are using to create 
sleek and sophisticated type with Flash.

Pixel Fonts are fonts that are specifically designed to be used 
with Flash. Because Flash anti-aliases all embedded font data, 
type set at smaller sizes tends to be hard to read due to the 
blurriness of the anti-aliased edges. The alternative to blurry type 
is orthochromatic type using one of only a handful of common 
fonts like Verdana or Times New Roman. Flash designers want 
access to other fonts besides the universal web fonts, but they 
also want their type to be legible at smaller sizes. One solution 
to this problem is pixel-based fonts.

Pixel fonts are designed to be used at only one size. The fonts 
are drawn entirely of squares and have no curves. When they 
are set inside of Flash at the specific size they were at which 
they were designed, the anti-alias that Flash applies to the letter 
forms is invisible because the letters are made entirely of black 
square cells, or “pixels.” With pixel-based fonts, Flash designers 
have access to a wider array of typefaces, and they can use 
these faces with confidence that their type will be legible at 
small sizes.

To use Pixel fonts, place the font files in your Fonts folder 
located in System Folder/Fonts for Mac OS 9 Users, or one 
of your Library/Fonts folders if you’re a Mac OS X user. Next, 
launch Flash MX. There are a couple of important rules you must 
learn about pixel fonts:

You must always use the font at the size it was created
For many pixel-based fonts, this is 8 points. Using the font 
at smaller or larger sizes results in Flash having to re-render 
the letter forms and an anti-alias will be applied. (See 
Figures 1 and Figure 2)

All content © 2003 Media Experts, Unauthorized Reproduction is Prohibited by Law.

Figure 1: Flash Rendering of Pixel-Based Font, 
Comparison of Sizes, 100%

Figure 2: Flash Rendering of Pixel-Based Font, 
Comparison of Sizes, 900%

On closer inspection at 900%, the disparity between an anti-aliased 
letterform and an orthochromatic letterform rendered in Flash becomes 
much more apparent. It is crucial to set pixel-based fonts at their intended 
sizes to avoid an anti-alias. 

by M.D. Rowland

When viewed at 100% (Figure 1) the rendering of Standard 07_56, a pixel-
based font from foundry miniml.com is rendered with an anti-alias when set 
at 9 points, but is rendered entirely orthochromatic when properly set at 8 
points. 



Always read the instructions
There are no universal rules concerning pixel fonts. 
Depending on the creator, there may be special instructions 
for specific fonts to ensure proper rendering. Always visit 
the web site of the foundry that created your font(s) or read 
the accompanying documentation.

Finding pixel-based fonts is fairly easy. The pioneer in this field 
is an online foundry called miniml.com (http://www.miniml.com). 
Miniml used to offer several families of pixel-based typefaces for 
free, but after their fonts became popular they switched to a fee-
based subscription service. However, there are a few fonts still 
available for free download at their web site.

Another major player in the field is FFF, FontsForFlash.com 
(http://www.fontsforflash.com). FFF has a variety of free and 
commercial fonts available from their web site.

There are dozens and dozens of other private foundries that 
can be located easily with internet search engines using the 
keywords “pixel fonts,” or “flash fonts.” Many have free, royalty-
free fonts for download on their web sites. An afternoon of good 
web browsing will likely turn up dozens of good-looking pixel-
based fonts for use in your Flash projects. One word of caution: 
you get what you pay for. With a few rare exceptions, the free 
fonts are mediocre in quality, and a few might not work at all. For 
a small investment, you can get a few quality pixel-based fonts 
from major foundries that will aid you in your designs for a long 
time to come.

Pixel fonts can be used to add sophistication, legibility, and 
professionalism to your Flash projects, but they’re tough to get 
right. Only after you’ve mastered using both device fonts and 
embedded fonts should you try to tackle pixel-based fonts.

of the following alignment techniques, you can overcome 
fractional pixel coordinate placement and ensure that your 
pixel-based font does not anti-alias.

Technique 1: Whole Pixel Alignment
Whole pixel alignment is by far the most successful of the 
three technigues for pixel alignment of pixel-based fonts. 
Over and above that, it is a good practice for every object 
that you place on the stage in your Flash projects. It helps 
ensure accurate rendering of vector objects when your 
project is exported to a shockwave movie.

With the text tool active, at the bottom left hand corner 
of the property inspector you can align your text box to 
whole pixels. This helps ensure that Flash will render your 
pixel-based fonts properly. See Figure 3 for an example of 
aligning text to whole pixels.

Technique 2: Difference Pixel Alignment
When whole pixel alignment is not successful, use the 
differnce method. Take the decimal value of the width of 
your text box and subtract it from 10. Take this difference 
and use it as the decimal value of the X coordinate. For 
example, if your text box has a width of 75.6, make the x 
coordinate’s decimal value 4. Repeat this procedure for the 
height/Y coordinate.

Technique 3: Identical Offset Pixel Alignment
In rare circumstances when whole or difference alignment 
are not successful, try the identical offset method. Take the 
decimal value of the width of the text box and use it as the 
decimal value for the X coordinate. For example, if your text 
box has a width of 75.6, make the X coordinate’s decimal 
value 6. Repeat this procedure for the height/Y coordinate.

You can not apply bold or italic attributes
Turning on the bold and/or italic attributes changes the way 
Flash renders font data and will most likely result in an 
anti-alias. If you need to create bold and italic letter forms, 
choose a separate bold or italic pixel-based font.

Figure 3: Pixel Alignment

In this figure you can see how whole pixel values have been supplied for the 
X: and Y: fields inside of the property inspector’s text properties. Using whole 
pixels helps ensure proper rendering of pixel fonts. In the event that whole 
pixel alignment does not eliminate the anti-alias rendering, use the difference 
or identical offset methods discussed below.

All content ©2003 Media Experts, Unauthorized Reproduction is Prohibited by Law.

For a research prospective on anti-aliased fonts, see:

Chandler, Scott B. (2002). Legibility and Comprehension of 
Onscreen Type. Unpublished Dissertation.


